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Abstract. We generalize the formalism for testing Lorentz invariance and the weak equivalence principle
in the neutrino sector. While neutrino oscillation bounds constrain the region of large mixing of the the
weak and gravitational eigenstates, we obtain new constraints on violations of Lorentz invariance and the
equivalence principle from neutrinoless double beta decay. These bounds apply even in the case of no
mixing and thus probe a totally unconstrained region in the parameter space.

Special relativity and the equivalence principle can be
considered as the most basic foundations of the theory
of gravity. Many experiments already have tested these
principles to a very high level of accuracy [1] for ordinary
matter – generally for quarks and leptons of the first gen-
eration. These precision tests of local Lorentz invariance
– violation of the equivalence principle should produce a
similar effect [2] – probe for any dependence of the (non–
gravitational) laws of physics on a laboratory’s position,
orientation or velocity relative to some preferred frame of
reference, such as the frame in which the cosmic microwave
background is isotropic.

A typical feature of the violation of local Lorentz in-
variance (VLI) is that different species of matter have a
characteristical maximum attainable speed. This can be
tested in various sectors of the standard model through
vacuum Cerenkov radiation [3], photon decay [4], neutrino
oscillations [5,8–11] and K−physics [6,7]. In this article
we extend these arguments to derive new constraints from
neutrinoless double beta decay.

The equivalence principle implies that spacetime is de-
scribed by unique operational geometry and hence univer-
sality of the gravitational coupling for all species of matter.
In the recent years there have been attempts to constrain
a possible amount of violation of the equivalence principle
(VEP) in the neutrino sector from neutrino oscillation ex-
periments [8–11]. However, these bounds don’t apply when
the gravitational and the weak eigenstates have small mix-
ing. In this article we present a generalized formalism of
the neutrino sector to test the VEP and point out that

neutrinoless double beta decay also constrains the VEP.
VEP implies different neutrino species to suffer from dif-
ferent gravitational potentials while propagating through
the nucleus and hence the effect of different eigenvalues
doesn’t cancel for the same effective momentum. Earlier
results on neutrino oscillations come out as special case
from our present formalism. The main result is that neu-
trinoless double beta decay can constrain the amount of
VEP even when the mixing angle is zero, i.e., when only
the weak equivalence principle is violated, for which there
does not exist any bound at present.

We shall first present our formalism for VLI and then
for VEP. For sake of clarity we formulate the problem
for a two generation scenario involving νe and νx with
x = µ, τ, s. Neutrinos of different species may have dif-
ferent maximum attainable velocities if there is violation
of local Lorentz invariance (VLI) and hence violation of
special relativity [4]. We first assume that the weak eigen-
states cannot be diagonalized simultaneously with the ve-
locity eigenstates and the neutrinos are relativistic point
particles. The effective Hamiltonian in the weak basis
[νe νx] is

H = UmHmU
−1
m + UvHvU

−1
v . (1)

In absence of VLI the neutrino mass matrix in the mass
basis [ν1 ν2] is given by

Hm =
(Mm)2

2p
=

1
2p

(
m1 0
0 m2

)2

(2)
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and the VLI part of the hamiltonian as

Hv =
(
v1 0
0 v2

)
p, (3)

to leading order in m̄2/p2. Here p denotes the momentum
and m̄ the average mass, and for any quantity X we define
δX ≡ (X1 −X2), X̄ = (X1 +X2)/2.

In the absence of VLI, i.e., when the special threory
of relativity is valid, vi = 1, and Hv simply becomes the
momentum of the neutrinos. Here we are interested in
a single neutrino beam (for neutrino oscillation experi-
ments) or a single virtual neutrino propagating inside the
nucleus with a particular momentum. For this reason we
assume the momenta of both the neutrinos are p. Then vi
corresponds to the maximum attainable speed of the cor-
responding momentum eigenstates. Hence v1−v2 = δv is a
measure of VLI in the neutrino sector. As typical or “stan-
dard” maximum attainable speed v1+v2

2 = 1 is assumed.
All previous bounds on this quantity δv in the neutrino
sector were derived from neutrino oscillation experiments
and for that reason these bounds are valid only for large
gravitational mixing. As we shall point out, neutrinoless
double beta decay can constrain δv even when the mixing
angle vanishes.

We shall not consider any CP violation, and hence Hm

and Hv are real symmetric matrices and Um and Uv are or-
thogonal matrices U−1 = UT . They can be parametrized

as Ui =
(

cos θi sin θi
− sin θi cos θi

)
, where θi represents weak mix-

ing angle θm or velocity mixing angle θv. We can now write
down the weak Hamiltonian Hw in the basis [νe νx], in
which the charged lepton mass matrix is diagonal and the
charged current interaction is also diagonal, as

H = pI +
1
2p

(
M+ M12

M12 M−

)2

.

Here I is the identity matrix and

M± = m̄± cos2θm
2

δm

±p
2

m̄
δv

(
cos 2θv

2
− δm

4m̄
cos 2(θm − θv)

)
M12 = − sin 2θm

2
δm

−p
2

m̄
δv

(
sin 2θv

2
+
δm

4m̄
sin 2(θm − θv)

)
. (4)

In the case of exact Lorentz invariance, we usually

write the mass matrix in the weak basis as
(
mee meµ

meµ mµµ

)
.

In the mass mechanism of neutrinoless double beta decay,
the decay rate

[T 0νββ
1/2 ]−1 =

〈m〉2
m2
e

G01|ME|2, (5)

is proportional to the effective neutrino mass 〈m〉 = mee =
M+. Here ME denotes the nuclear matrix element ME =

MF − MGT , G01 corresponds to the phase space factor
defined in [12] and me is the electron mass. The double
beta observable can be written as

〈m〉 =
∑
i

U2
eimi = m1 cos2 θw +m2 sin2 θw

= m̄+
1
2
δm cos 2θw. (6)

If mee = 0, the two physical eigenstates with eigenval-
ues m1 and m2 will contribute to the neutrinoless double
beta decay by an amount U2

e1m1 and U2
e2m2, respectively,

which cancels each other. However, if these two physical
states have different maximum attainable speed, corre-
sponding to VLI, this cancellation will not be exact for the
same cut–off effective momentum in the neutrino propa-
gator. As a result, even when mee = 0, we can have neu-
trinoless double beta decay, which is proportional to the
amount of VLI and the double beta observable is given
by M+ in (4). From (4) it can easily be seen that in the
region of maximal mixing cos 2θv = 0, the double beta
decay rate vanishes. Thus neutrinoless double beta decay
doesn’t constrain the amount of VLI for maximal mix-
ing. However, when the mixing approaches zero, the most
stringent bound from neutrinoless double beta decay is
obtained. In this case δv/2 can be understood as deriva-
tion from the standard maximum attainable speed v̄. As
it is obvious, when there is no mixing the neutrino oscil-
lation experiments cannot give any bound on the amount
of VLI, since in absence of mixing only VLI cannot allow
neutrino oscillations.

To give a bound on VLI in the small mixing region (in-
cluding θv = θm = 0) we assume conservatively 〈m〉 ' 0.
We also assume δm ≤ m̄, and thus δm

4m̄ may be ne-
glected. Due to the p2 enhancement the nuclear matrix
elements of the mass mechanism have to be replaced by
mp
R · (M

′

F −M
′

GT ) with the nuclear radius R and the pro-
ton mass mp, which have been calculated in [13]. Inserting
the recent half life limit obtained from the Heidelberg–
Moscow experiment [14], T 0νββ

1/2 > 1.2 · 1025y, a bound on
the amount of VLI as a function of the average neutrino
mass m̄ can be given. The most reliable assumption for
m̄ is obtained from the cosmological bound

∑
imi < 40

eV [15], i.e., m̄ < 13 eV for three generations, implying a
bound of

δv < 4× 10−16 for θv = θm = 0.

However, combining the present experimental constraints
from atmospheric and solar neutrino data as well as from
tritium beta decay in a three neutrino framework and
assuming a typical hierarchical mass pattern spectrum
m3 À m1,2 or m3 ' m2 À m1 implies m̄ <∼ 0.08 eV [16]
and improves the bound to δv < 2 ·10−18 for θv = θm = 0.

In Fig. 1 the bound implied by double beta decay is
presented for the entire range of sin22θv and compared
with bounds obtained from neutrino oscillation experi-
ments in [10]. It should be stressed also that the GENIUS
proposal of the Heidelberg group [17] could improve these
bounds by about 1–2 orders of magnitude.
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Fig. 1. Double beta decay bound (solid line) on violation of
Lorentz invariance in the neutrino sector, excluding the region
to the upper left. Shown is a double logarithmic plot in the δv–
sin2(2θ) parameter space. The bound becomes most stringent
for the small mixing region, which has not been constrained
from any other experiments. For comparison the bounds ob-
tained from neutrino oscillation experiments (from [10]) in the
νe− ντ (dashed lines) and in the νe− νµ (dashed-dotted lines)
channel, excluding the region to the right, are shown

For comparison, in the following the amount of VLI
in neutrino oscillation experiments is calculated in this
formalism. In the basis of the physical states νa and νb,
the Hamiltonian becomes

H =

(
p+ m2

a

2p 0

0 p+ m2
b

2p

)

=
(
Ē 0
0 Ē

)
+

1
2

(
∆E 0

0 −∆E

)
, (7)

where Ē = (p+ m̄2

2p ) and

p

m̄
∆E = ma −mb

=

[
(δm)2 +

(
δv
p2

m̄

)2

+ 2δmδv
p2

m̄
cos(2(θw − θv))

]1/2

.(8)

The new mixing angle θtot is a function of θm and θv and
the oscillation probability is now given by

P (νe → νx) = sin2 2θtot sin2 πL

λ
, (9)

where λ = πp
∆m2 and ∆m2 = m2

a − m2
b . In the limit of

vanishing neutrino masses, neutrino oscillations are im-

plied only by VLI. In this case the oscillation probability
becomes

P (νe → νx) = sin2 2θv sin2 pLδv,

which corresponds to the expression obtained earlier [5].
Here p denotes the total beam energy. From this expres-
sion it beomes clear that in the case of no mixing, θv = 0,
neutrino oscillation experiments don’t constrain the size
of VLI effects.

In the following we present the formalism for violation
of the equivalence principle (VEP). While in the final ex-
pression the amount of VLI just will be replaced by VEP,
the origin differs. In a linearized theory the gravitational
part of the Lagrangian to first order in a weak gravita-
tional field gµν = ηµν + hµν (hµν = 2 φ

c2 diag(1, 1, 1, 1))
can be written as L = − 1

2 (1 + gi)hµνTµν , where Tµν is
the stress-energy in the gravitational eigenbasis. In the
presence of VEP the gi may differ. Assuming only vio-
lation of the weak equivalence principle, the gravitational
interaction is diagonal but the couplings differ. In this case
there does not exist any bound on the amount of VEP. We
point out that this region of the parameter region is most
restrictively bounded by neutrinoless double beta decay.

The effective Hamiltonian in the weak basis again can
be written as

H = pI + UmHmU
−1
m + UGHGU

−1
G , (10)

with Hm given in (2) and

HG=
(
G1 0
0 G2

)
=

(
−2(1 + g1)φ(p+ m̄2

2p ) 0

0 −2(1 + g2)φ(p+ m̄2

2p )

)
(11)

to first order in m̄2/p2. In formalisms where only violation
of the weak equivalence principle is assumed, one starts
with UG proportional to UW , in which case there does not
exist any bound from the neutrino oscillation experiments.

The Hamiltonian in the weak basis is

M± = m̄± cos 2θm
2

δm

± p

m̄
δG

(
cos 2θG

2
− δm

4m̄
cos(θm − θv)

)
M12 = − sin 2θm

2
δm

− p

m̄
δG

(
sin 2θG

2
+
δm

4m̄
sin(θm − θv)

)
. (12)

Compared to VLI, the expressions for this case of VEP
remain unchanged, except for replacing δv by 1

pδG. Again,
ḡ = g1+g2

2 can be considered as the standard gravitational
coupling, for which the equivalence principle applies.

Thus the discussion of VLI can be directly translated
to the VEP case and the bound from neutrinoless double
beta decay for θv = θm = 0 is now given by

φδg < 4× 10−16 (for m̄ < 13eV)
φδg < 2× 10−18 (for m̄ < 0.08eV) (13)
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In this case, δG = pφδg, where φ is the background Newto-
nian gravitational potential on the surface of the earth. A
natural choice for φ would be the earth’s gravitational po-
tential (∼ 10−9), but another well motivated choice could
be the potential due to all forms of distant matter. Unlike
the case of VLI, the bound on the VEP will depend on
what one chooses for the Newtonian potential φ. For this
reason, here we only present the combined bound on φδg.

In summary, we presented a general formalism for the
study of both VLI and VEP in the neutrino sector. We
pointed out that neutrinoless double beta decay can con-
strain the amount of VLI or VEP. In particular, when
the mixing of the gravitational eigenstates vanishes, the
bounds from neutrinoless double beta decay become most
stringent, while this region is not constrained by any other
experiments.

One of us (US) would like to acknowledge the hospitality of the
Theory Group, DESY, Hamburg, the Max-Planck-Institut für
Kernphysik, Heidelberg and a fellowship from the Alexander
von Humboldt Foundation.
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